
zope.password Documentation
Release 4.1

Zope Foundation and Contributors

Oct 18, 2018

Contents

1 Using zope.password 3
1.1 Password Manager Interfaces . 4
1.2 Looking Up Password Managers via a Vocabulary . 4
1.3 Encrypting Passwords with zpasswd . 5

2 zope.password API 7
2.1 Interfaces . 7
2.2 Password Manager Implementations . 7
2.3 Vocabulary . 18

3 Indices and tables 19

Python Module Index 21

i

ii

zope.password Documentation, Release 4.1

Contents:

Contents 1

zope.password Documentation, Release 4.1

2 Contents

CHAPTER 1

Using zope.password

This package provides a password manager mechanism. Password manager is an utility object that can encode and
check encoded passwords. Beyond the generic interface, this package also provides eight implementations:

zope.password.password.PlainTextPasswordManager

The most simple and the less secure one. It does not do any password encoding and simply checks
password by string equality. It’s useful in tests or as a base class for more secure implementations.

zope.password.password.MD5PasswordManager

A password manager that uses MD5 algorithm to encode passwords. It’s generally weak against dictionary
attacks due to a lack of a salt.

zope.password.password.SMD5PasswordManager

A password manager that uses MD5 algorithm, together with a salt to encode passwords. It’s better
protected against against dictionary attacks, but the MD5 hashing algorithm is not as strong as the SHA1
algorithm.

zope.password.password.SHA1PasswordManager

A password manager that uses SHA1 algorithm to encode passwords. It has the same weakness as the
MD5PasswordManager.

zope.password.password.SSHAPasswordManager

A password manager that is strong against dictionary attacks. It’s basically SHA1-encoding password
manager which also incorporates a salt into the password when encoding it.

zope.password.password.CryptPasswordManager

A manager implementing the crypt(3) hashing scheme. Only available if the python crypt module is
installed. This is a legacy manager, only present to ensure that zope.password can be used for all schemes
defined in RFC 2307 (LDAP).

zope.password.password.MySQLPasswordManager

A manager implementing the digest scheme as implemented in the MySQL PASSWORD function in
MySQL versions before 4.1. Note that this method results in a very weak 16-byte hash.

3

zope.password Documentation, Release 4.1

zope.password.password.BCRYPTPasswordManager

A manager implementing the bcrypt hashing scheme. Only available if the bcrypt module is installed.
This manager is considered one of the most secure.

zope.password.password.BCRYPTKDFPasswordManager

A manager implementing the bcrypt_kdf hashing scheme. Only available if the bcrypt module is installed.
This manager is considered one of the most secure.

The Crypt, MD5, SMD5, SHA and SSHA password managers are all compatible with RFC 2307 LDAP implementa-
tions of the same password encoding schemes.

Note: It is strongly recommended to use the BCRYPTPasswordManager or BCRYPTKDFPasswordManager, as they
are the most secure.

The package also provides a script, zpasswd, to generate principal entries in typical site.zcml files.

1.1 Password Manager Interfaces

The zope.password.interfaces.IPasswordManager interface defines only two methods:

def encodePassword(password):
"""Return encoded data for the given password

Return encoded bytes.
"""

def checkPassword(encoded_password, password):
"""Does the encoded password match the given password?

Return True if they match, else False.
"""

An extended interface, zope.password.interfaces.IMatchingPasswordManager, adds one additional
method:

def match(encoded_password):
"""Was the given data was encoded with this manager's scheme?

Return True when the given data was encoded with the scheme
implemented by this password manager.
"""

1.2 Looking Up Password Managers via a Vocabulary

The zope.password.vocabulary module provides a vocabulary of registered password manager utility names.
It is typically registered as an zope.schema.interfaces.IVocabularyFactory utility named “Password
Manager Names”.

It’s intended to be used with zope.component and zope.schema, so you need to have them installed and the
utility registrations needs to be done properly. The configure.zcml file contained in zope.password does the
registrations, as well as in zope.password.testing.setUpPasswordManagers().

4 Chapter 1. Using zope.password

https://pypi.python.org/pypi/bcrypt
https://pypi.python.org/pypi/bcrypt

zope.password Documentation, Release 4.1

1.3 Encrypting Passwords with zpasswd

zpasswd is a script to generate principal entries in typical site.zcml files.

You can create a zpasswd script in your buildout by adding a section like this to your buildout.cfg:

[zpasswd]
recipe = z3c.recipe.dev:script
eggs = zope.password
module = zope.password.zpasswd
method = main

This will generate a script zpasswd next time you run buildout.

When run, the script will ask you for all parameters needed to create a typical principal entry, including the encrypted
password.

Use:

$ bin/zpasswd --help

to get a list of options.

Using

$ bin/zpasswd -c some/site.zcml

the script will try to lookup any password manager you defined and registered in your environment. This is lookup is
not necessary if you go with the standard password managers defined in zope.password.

A typical zpasswd session might look like:

$./bin/zpasswd

Please choose an id for the principal.

Id: foo

Please choose a title for the principal.

Title: The Foo

Please choose a login for the principal.

Login: foo

Password manager:

1. Plain Text
2. MD5
3. SMD5
4. SHA1
5. SSHA
6. BCRYPT

Password Manager Number [6]:
BCRYPT password manager selected

(continues on next page)

1.3. Encrypting Passwords with zpasswd 5

zope.password Documentation, Release 4.1

(continued from previous page)

Please provide a password for the principal.

Password:
Verify password:

Please provide an optional description for the principal.

Description: The main foo

==
Principal information for inclusion in ZCML:

<principal
id="foo"
title="The Foo"
login="foo"
password="{BCRYPT}$2b$12$ez4eHl6W1PfAWix5bPIbe.drdnyqjpuT1Cp0N.xcdxkAEbA7K6AHK"
description="The main foo"
password_manager="BCRYPT"
/>

6 Chapter 1. Using zope.password

CHAPTER 2

zope.password API

2.1 Interfaces

Password manager interface

interface zope.password.interfaces.IPasswordManager
Password manager utility interface.

encodePassword(password)
Return encoded data for the given password

Return encoded bytes.

checkPassword(encoded_password, password)
Does the encoded password match the given password?

Return True if they match, else False.

interface zope.password.interfaces.IMatchingPasswordManager
Extends: zope.password.interfaces.IPasswordManager

Password manager with hash matching support

match(encoded_password)
Was the given data was encoded with this manager’s scheme?

Return True when the given data was encoded with the scheme implemented by this password manager.

2.2 Password Manager Implementations

Password managers

class zope.password.password.PlainTextPasswordManager
Bases: object

Plain text password manager.

7

https://docs.python.org/3/library/functions.html#object

zope.password Documentation, Release 4.1

>>> from zope.interface.verify import verifyObject
>>> from zope.password.interfaces import IMatchingPasswordManager
>>> from zope.password.password import PlainTextPasswordManager

>>> manager = PlainTextPasswordManager()
>>> verifyObject(IMatchingPasswordManager, manager)
True

>>> password = u"right \N{CYRILLIC CAPITAL LETTER A}"
>>> encoded = manager.encodePassword(password)
>>> encoded == password.encode('utf-8')
True
>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

The plain text password manager never claims to implement the scheme, because this would open a security
hole, where a hash from a different scheme could be used as-is as a plain-text password. Authentication code
that needs to support plain-text passwords need to explicitly check for plain-text password matches after all
other options have been tested for:

>>> manager.match(encoded)
False

class zope.password.password.SSHAPasswordManager
Bases: zope.password.password._PrefixedPasswordManager

SSHA password manager.

SSHA is basically SHA1-encoding which also incorporates a salt into the encoded string. This way, stored pass-
words are more robust against dictionary attacks of attackers that could get access to lists of encoded passwords.

SSHA is regularly used in LDAP databases and we should be compatible with passwords used there.

>>> from zope.interface.verify import verifyObject
>>> from zope.password.interfaces import IMatchingPasswordManager
>>> from zope.password.password import SSHAPasswordManager

>>> manager = SSHAPasswordManager()
>>> verifyObject(IMatchingPasswordManager, manager)
True

>>> password = u"right \N{CYRILLIC CAPITAL LETTER A}"
>>> encoded = manager.encodePassword(password, salt="")
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{SSHA}BLTuxxVMXzouxtKVb7gLgNxzdAI=

>>> manager.match(encoded)
True
>>> manager.match(encoded.decode())
True
>>> manager.checkPassword(encoded, password)
True

(continues on next page)

8 Chapter 2. zope.password API

zope.password Documentation, Release 4.1

(continued from previous page)

>>> manager.checkPassword(encoded, password + u"wrong")
False

Using the slappasswd utility to encode secret, we get {SSHA}x3HIoiF9y6YRi/
I4W1fkptbzTDiNr+9l as seeded hash.

Our password manager generates the same value when seeded with the same salt, so we can be sure, our output
is compatible with standard LDAP tools that also use SSHA:

>>> from base64 import standard_b64decode
>>> salt = standard_b64decode('ja/vZQ==')
>>> password = 'secret'
>>> encoded = manager.encodePassword(password, salt)
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{SSHA}x3HIoiF9y6YRi/I4W1fkptbzTDiNr+9l

>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

We can also pass a salt that is a text string:

>>> salt = u'salt'
>>> password = 'secret'
>>> encoded = manager.encodePassword(password, salt)
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{SSHA}gVK8WC9YyFT1gMsQHTGCgT3sSv5zYWx0

Because a random salt is generated, the output of encodePassword is different every time you call it.

>>> manager.encodePassword(password) != manager.encodePassword(password)
True

The password manager should be able to cope with unicode strings for input:

>>> passwd = u'foobar\u2211' # sigma-sign.
>>> manager.checkPassword(manager.encodePassword(passwd), passwd)
True
>>> manager.checkPassword(manager.encodePassword(passwd).decode(), passwd)
True

The manager only claims to implement SSHA encodings, anything not starting with the string {SSHA} returns
False:

>>> manager.match('{MD5}someotherhash')
False

An older version of this manager used the urlsafe variant of the base64 encoding (replacing / and + characters
with _ and - respectively). Hashes encoded with the old manager are still supported:

2.2. Password Manager Implementations 9

zope.password Documentation, Release 4.1

>>> encoded = '{SSHA}x3HIoiF9y6YRi_I4W1fkptbzTDiNr-9l'
>>> manager.checkPassword(encoded, 'secret')
True

class zope.password.password.SMD5PasswordManager
Bases: zope.password.password._PrefixedPasswordManager

SMD5 password manager.

SMD5 is basically SMD5-encoding which also incorporates a salt into the encoded string. This way, stored
passwords are more robust against dictionary attacks of attackers that could get access to lists of encoded pass-
words:

>>> from zope.interface.verify import verifyObject
>>> from zope.password.interfaces import IMatchingPasswordManager
>>> from zope.password.password import SMD5PasswordManager

>>> manager = SMD5PasswordManager()
>>> verifyObject(IMatchingPasswordManager, manager)
True

>>> password = u"right \N{CYRILLIC CAPITAL LETTER A}"
>>> encoded = manager.encodePassword(password, salt="")
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{SMD5}ht3czsRdtFmfGsAAGOVBOQ==

>>> manager.match(encoded)
True
>>> manager.match(encoded.decode())
True
>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

Using the slappasswd utility to encode secret, we get {SMD5}zChC6x0tl2zr9fjvjZzKePV5KWA=
as seeded hash.

Our password manager generates the same value when seeded with the same salt, so we can be sure, our output
is compatible with standard LDAP tools that also use SMD5:

>>> from base64 import standard_b64decode
>>> salt = standard_b64decode('9XkpYA==')
>>> password = 'secret'
>>> encoded = manager.encodePassword(password, salt)
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{SMD5}zChC6x0tl2zr9fjvjZzKePV5KWA=

>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

10 Chapter 2. zope.password API

zope.password Documentation, Release 4.1

We can also pass a salt that is a text string:

>>> salt = u'salt'
>>> password = 'secret'
>>> encoded = manager.encodePassword(password, salt)
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{SMD5}mc0uWpXVVe5747A4pKhGJXNhbHQ=

Because a random salt is generated, the output of encodePassword is different every time you call it.

>>> manager.encodePassword(password) != manager.encodePassword(password)
True

The password manager should be able to cope with unicode strings for input:

>>> passwd = u'foobar\u2211' # sigma-sign.
>>> manager.checkPassword(manager.encodePassword(passwd), passwd)
True
>>> manager.checkPassword(manager.encodePassword(passwd).decode(), passwd)
True

The manager only claims to implement SMD5 encodings, anything not starting with the string {SMD5} returns
False:

>>> manager.match('{MD5}someotherhash')
False

class zope.password.password.MD5PasswordManager
Bases: zope.password.password._PrefixedPasswordManager

MD5 password manager.

>>> from zope.interface.verify import verifyObject
>>> from zope.password.interfaces import IMatchingPasswordManager
>>> from zope.password.password import MD5PasswordManager

>>> manager = MD5PasswordManager()
>>> verifyObject(IMatchingPasswordManager, manager)
True

>>> password = u"right \N{CYRILLIC CAPITAL LETTER A}"
>>> encoded = manager.encodePassword(password)
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{MD5}ht3czsRdtFmfGsAAGOVBOQ==
>>> manager.match(encoded)
True
>>> manager.match(encoded.decode())
True
>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

2.2. Password Manager Implementations 11

zope.password Documentation, Release 4.1

This password manager is compatible with other RFC 2307 MD5 implementations. For example the output of
the slappasswd command for a MD5 hashing of secret is {MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ==, and
our implementation returns the same hash:

>>> print(manager.encodePassword('secret').decode())
{MD5}Xr4ilOzQ4PCOq3aQ0qbuaQ==

The password manager should be able to cope with unicode strings for input:

>>> passwd = u'foobar\u2211' # sigma-sign.
>>> manager.checkPassword(manager.encodePassword(passwd), passwd)
True
>>> manager.checkPassword(manager.encodePassword(passwd).decode(), passwd)
True

A previous version of this manager also created a cosmetic salt, added to the start of the hash, but otherwise
not used in creating the hash itself. Moreover, it generated the MD5 hash as a hex digest, not a base64 encoded
value and did not include the {MD5} prefix. Such hashed values are still supported too:

>>> encoded = 'salt86dddccec45db4599f1ac00018e54139'
>>> manager.checkPassword(encoded, password)
True

However, because the prefix is missing, the password manager cannot claim to implement the scheme:

>>> manager.match(encoded)
False

class zope.password.password.SHA1PasswordManager
Bases: zope.password.password._PrefixedPasswordManager

SHA1 password manager.

>>> from zope.interface.verify import verifyObject
>>> from zope.password.interfaces import IMatchingPasswordManager
>>> from zope.password.password import SHA1PasswordManager

>>> manager = SHA1PasswordManager()
>>> verifyObject(IMatchingPasswordManager, manager)
True

>>> password = u"right \N{CYRILLIC CAPITAL LETTER A}"
>>> encoded = manager.encodePassword(password)
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{SHA}BLTuxxVMXzouxtKVb7gLgNxzdAI=
>>> manager.match(encoded)
True
>>> manager.match(encoded.decode())
True
>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

This password manager is compatible with other RFC 2307 SHA implementations. For example the output of
the slappasswd command for a SHA hashing of secret is {SHA}5en6G6MezRroT3XKqkdPOmY/BfQ=,

12 Chapter 2. zope.password API

zope.password Documentation, Release 4.1

and our implementation returns the same hash:

>>> print(manager.encodePassword('secret').decode())
{SHA}5en6G6MezRroT3XKqkdPOmY/BfQ=

The password manager should be able to cope with unicode strings for input:

>>> passwd = u'foobar\u2211' # sigma-sign.
>>> manager.checkPassword(manager.encodePassword(passwd), passwd)
True
>>> manager.checkPassword(manager.encodePassword(passwd).decode(), passwd)
True

A previous version of this manager also created a cosmetic salt, added to the start of the hash, but otherwise
not used in creating the hash itself. Moreover, it generated the SHA hash as a hex digest, not a base64 encoded
value and did not include the {SHA} prefix. Such hashed values are still supported too:

>>> encoded = 'salt04b4eec7154c5f3a2ec6d2956fb80b80dc737402'
>>> manager.checkPassword(encoded, password)
True

However, because the prefix is missing, the password manager cannot claim to implement the scheme:

>>> manager.match(encoded)
False

Previously, this password manager used {SHA1} as a prefix, but this was changed to be compatible with LDAP
(RFC 2307). The old prefix is still supported (note the hexdigest encoding as well):

>>> password = u"right \N{CYRILLIC CAPITAL LETTER A}"
>>> encoded = '{SHA1}04b4eec7154c5f3a2ec6d2956fb80b80dc737402'
>>> manager.match(encoded)
True
>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

class zope.password.password.BCRYPTPasswordManager
Bases: zope.password.password._PrefixedPasswordManager

BCRYPT password manager.

In addition to the passwords encoded by this class, this class can also recognize passwords encoded by z3c.
bcrypt and properly match and check them.

Note: This uses the bcrypt library in its implementation, which only uses the first 72 characters of the
password when computing the hash.

checkPassword(hashed_password, clear_password)
Check a hashed_password against a clear_password.

>>> from zope.password.password import BCRYPTPasswordManager
>>> manager = BCRYPTPasswordManager()
>>> manager.checkPassword(b'not from here', None)
False

2.2. Password Manager Implementations 13

https://pypi.python.org/pypi/bcrypt/3.1.3#maximum-password-length

zope.password Documentation, Release 4.1

Parameters

• hashed_password (bytes) – The encoded password.

• clear_password (unicode) – The password to check.

Returns True iif hashed passwords are equal.

Return type bool

encodePassword(password, salt=None)
Encode a password, with an optional salt.

If salt is not provided, a unique hash will be generated for each invokation.

Parameters

• password (unicode) – The clear-text password.

• salt – The salt to be used to hash the password.

Return type str

Returns The encoded password as a byte-siring.

match(hashed_password)
Was the password hashed with this password manager?

Parameters hashed_password (bytes) – The encoded password.

Return type bool

Returns True iif the password was hashed with this manager.

class zope.password.password.BCRYPTKDFPasswordManager
Bases: zope.password.password._PrefixedPasswordManager

BCRYPT KDF password manager.

This manager converts a plain text password into a byte array. The password and salt values (randomly generated
when the password is encoded) are combined and repeatedly hashed rounds times. The repeated hashing is
designed to thwart discovery of the key via password guessing attacks. The higher the number of rounds, the
slower each attempt will be.

Compared to the BCRYPTPasswordManager, this has the advantage of allowing tunable rounds, so as com-
puting devices get more powerful making brute force attacks faster, the difficulty level can be raised (for newly
encoded passwords).

>>> from zope.password.password import BCRYPTKDFPasswordManager
>>> manager = BCRYPTKDFPasswordManager()
>>> manager.checkPassword(b'not from here', None)
False

Let’s encode a password. We’ll use the minimum acceptable number of rounds so that the tests run fast:

>>> manager.rounds = 51
>>> password = u"right \N{CYRILLIC CAPITAL LETTER A}"
>>> encoded = manager.encodePassword(password)
>>> print(encoded.decode())
{BCRYPTKDF}33...

It checks out:

14 Chapter 2. zope.password API

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool

zope.password Documentation, Release 4.1

>>> manager.checkPassword(encoded, password)
True

We can change the number of rounds for future encodings:

>>> manager.rounds = 100
>>> encoded2 = manager.encodePassword(password)
>>> print(encoded2.decode())
{BCRYPTKDF}64...
>>> manager.checkPassword(encoded2, password)
True

And the old password still checks out:

>>> manager.checkPassword(encoded, password)
True

rounds = 1024
The number of rounds of hashing that should be applied. The higher the number, the slower it is. It should
be at least 50.

keylen = 32
The number of bytes long the encoded password will be. It must be at least 1 and no more than 512.

2.2.1 Deprecated Implementations

Warning: The following password managers are deprecated, because they produce unacceptably-weak password
hashes. They are only included to allow apps which previously used them to migrate smoothly to a supported
implementation.

Legacy password managers, using now-outdated, insecure methods for hashing

class zope.password.legacy.CryptPasswordManager
Bases: object

Crypt password manager.

Implements a UNIX crypt(3) hashing scheme. Note that crypt is considered far inferior to more modern schemes
such as SSHA hashing, and only uses the first 8 characters of a password.

>>> from zope.interface.verify import verifyObject
>>> from zope.password.interfaces import IMatchingPasswordManager
>>> from zope.password.legacy import CryptPasswordManager

>>> manager = CryptPasswordManager()
>>> verifyObject(IMatchingPasswordManager, manager)
True

>>> password = u"right \N{CYRILLIC CAPITAL LETTER A}"
>>> encoded = manager.encodePassword(password, salt="..")
>>> encoded
'{CRYPT}..I1I8wps4Na2'
>>> manager.match(encoded)
True

(continues on next page)

2.2. Password Manager Implementations 15

https://docs.python.org/3/library/functions.html#object

zope.password Documentation, Release 4.1

(continued from previous page)

>>> manager.checkPassword(encoded, password)
True

Note that this object fails to return bytes from the encodePassword function on Python 3:

>>> isinstance(encoded, str)
True

Unfortunately, crypt only looks at the first 8 characters, so matching against an 8 character password plus suffix
always matches. Our test password (including utf-8 encoding) is exactly 8 characters long, and thus affixing
‘wrong’ to it tests as a correct password:

>>> manager.checkPassword(encoded, password + u"wrong")
True

Using a completely different password is rejected as expected:

>>> manager.checkPassword(encoded, 'completely wrong')
False

Using the openssl passwd command-line utility to encode secret, we get erz50QD3gv4Dw as seeded hash.

Our password manager generates the same value when seeded with the same salt, so we can be sure, our output
is compatible with standard LDAP tools that also use crypt:

>>> salt = 'er'
>>> password = 'secret'
>>> encoded = manager.encodePassword(password, salt)
>>> encoded
'{CRYPT}erz50QD3gv4Dw'

>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

>>> manager.encodePassword(password) != manager.encodePassword(password)
True

The manager only claims to implement CRYPT encodings, anything not starting with the string {CRYPT}
returns False:

>>> manager.match('{MD5}someotherhash')
False

class zope.password.legacy.MySQLPasswordManager
Bases: object

A MySQL digest manager.

This Password Manager implements the digest scheme as implemented in the MySQL PASSWORD function in
MySQL versions before 4.1. Note that this method results in a very weak 16-byte hash.

>>> from zope.interface.verify import verifyObject
>>> from zope.password.interfaces import IMatchingPasswordManager
>>> from zope.password.legacy import MySQLPasswordManager

16 Chapter 2. zope.password API

https://docs.python.org/3/library/functions.html#object

zope.password Documentation, Release 4.1

>>> manager = MySQLPasswordManager()
>>> verifyObject(IMatchingPasswordManager, manager)
True

>>> password = u"right \N{CYRILLIC CAPITAL LETTER A}"
>>> encoded = manager.encodePassword(password)
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{MYSQL}0ecd752c5097d395
>>> manager.match(encoded)
True
>>> manager.match(encoded.decode())
True
>>> manager.checkPassword(encoded.decode(), password)
True
>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

Using the password ‘PHP & Information Security’ should result in the hash 379693e271cd3bd6, according
to http://phpsec.org/articles/2005/password-hashing.html

Our password manager generates the same value when seeded with the same seed, so we can be sure, our output
is compatible with MySQL versions before 4.1:

>>> password = 'PHP & Information Security'
>>> encoded = manager.encodePassword(password)
>>> isinstance(encoded, bytes)
True
>>> print(encoded.decode())
{MYSQL}379693e271cd3bd6

>>> manager.checkPassword(encoded, password)
True
>>> manager.checkPassword(encoded, password + u"wrong")
False

The manager only claims to implement MYSQL encodings, anything not starting with the string {MYSQL}
returns False:

>>> manager.match('{MD5}someotherhash')
False

Spaces and tabs are ignored:

>>> encoded = manager.encodePassword(' ign or ed')
>>> print(encoded.decode())
{MYSQL}75818366052c6a78
>>> encoded = manager.encodePassword('ignored')
>>> print(encoded.decode())
{MYSQL}75818366052c6a78

2.2. Password Manager Implementations 17

http://phpsec.org/articles/2005/password-hashing.html

zope.password Documentation, Release 4.1

2.3 Vocabulary

Vocabulary of password manager utility names

For use with zope.component and zope.schema.

zope.password.vocabulary.PasswordManagerNamesVocabulary(context=None)
Return a vocabulary listing password manager implementations by name.

18 Chapter 2. zope.password API

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19

zope.password Documentation, Release 4.1

20 Chapter 3. Indices and tables

Python Module Index

z
zope.password.interfaces, 7
zope.password.legacy, 15
zope.password.password, 7
zope.password.vocabulary, 18

21

zope.password Documentation, Release 4.1

22 Python Module Index

Index

B
BCRYPTKDFPasswordManager (class in

zope.password.password), 14
BCRYPTPasswordManager (class in

zope.password.password), 13

C
checkPassword() (zope.password.interfaces.IPasswordManager

method), 7
checkPassword() (zope.password.password.BCRYPTPasswordManager

method), 13
CryptPasswordManager (class in zope.password.legacy),

15

E
encodePassword() (zope.password.interfaces.IPasswordManager

method), 7
encodePassword() (zope.password.password.BCRYPTPasswordManager

method), 14

I
IMatchingPasswordManager (interface in

zope.password.interfaces), 7
IPasswordManager (interface in

zope.password.interfaces), 7

K
keylen (zope.password.password.BCRYPTKDFPasswordManager

attribute), 15

M
match() (zope.password.interfaces.IMatchingPasswordManager

method), 7
match() (zope.password.password.BCRYPTPasswordManager

method), 14
MD5PasswordManager (class in

zope.password.password), 11
MySQLPasswordManager (class in

zope.password.legacy), 16

P
PasswordManagerNamesVocabulary() (in module

zope.password.vocabulary), 18
PlainTextPasswordManager (class in

zope.password.password), 7

R
rounds (zope.password.password.BCRYPTKDFPasswordManager

attribute), 15

S
SHA1PasswordManager (class in

zope.password.password), 12
SMD5PasswordManager (class in

zope.password.password), 10
SSHAPasswordManager (class in

zope.password.password), 8

Z
zope.password.interfaces (module), 7
zope.password.legacy (module), 15
zope.password.password (module), 7
zope.password.vocabulary (module), 18

23

	Using zope.password
	Password Manager Interfaces
	Looking Up Password Managers via a Vocabulary
	Encrypting Passwords with zpasswd

	zope.password API
	Interfaces
	Password Manager Implementations
	Vocabulary

	Indices and tables
	Python Module Index

